Global Newshealthhealth and medical scienceslatestlatestScientific ResearchScientific Researchtrending news

Biomechanics and TGF Beta Exploring the Key to Effective Wound Healing

Uncovering the Link Between Cell Biomechanics and TGF Beta Activation and Wound Healing

An interdisciplinary team of researchers from the Indian Institute of Science (IISc) has uncovered how the stiffness of a cell’s microenvironment influences its form and function. The team was led by Namrata Gundiah, Professor at the Department of Mechanical Engineering, and Paturu Kondaiah, Professor at the Department of Developmental Biology and Genetics. The findings provide a better understanding of what happens to tissues during wound healing.

Inefficient wound healing results in tissue fibrosis, a process that can cause scar formation, and may even lead to conditions like cardiac arrest. Changes in the mechanical properties of tissues – like stiffness – also happen in diseases like cancer.

Biomechanics and TGF Beta

In the study, published in Bioengineering, the team cultured fibroblast cells – the building blocks of our body’s connective tissue – on a polymer substrate called PDMS with varying degrees of stiffness. They found that a change in the stiffness altered cell structure and function. Fibroblast cells are involved in extensive remodeling of the extracellular matrix (ECM) surrounding biological cells. The ECM, in turn, provides the mechanical tension that cells feel inside the body. The team found that fibroblasts cultured on substrates that had lower stiffness were rounder and showed accompanying changes in the levels of cytoskeleton proteins such as actin and tubulin. Moreover, fibroblasts grown on such substrates showed cell cycle arrest, lower rates of cell growth, and cell death.

To pinpoint the “master regulator” that drives changes in the cell when substrate stiffness changes, the team focused their attention on an important signaling protein called Transforming Growth Factor-β (TGF-β). Previous work has shown that the activity of fibroblasts and the downstream ECM architecture are regulated by TGF Beta “The thing is, people talk about the chemical changes… but not about biomechanical,” says Brijesh Kumar Verma, a former PhD student at the Department of Developmental Biology and Genetics, IISc, and first author of the study. For example, while the TGF-β signaling cascade has been extensively studied in cancer, the influence of mechanical forces, such as substrate stiffness, has not been studied so far, Verma adds.

The ECM surrounding different tissues has different levels of stiffness – from being soft around the muscle, to very hard around bone. To mimic this diversity, the team fabricated PDMS substrates of varying stiffness on which fibroblasts were grown. “You can use PDMS to create biocompatible materials with substrate stiffness over large orders of magnitude, from 40 kilopascals to more than 1.5 megapascals,” explains Aritra Chatterjee, former PhD student at the Department of Bioengineering, IISc, and another author.

At first, the researchers did not observe any changes in the total TGF-β levels. “Interestingly, when we did the activity-based assay for TGF-β, we were quite surprised,” says Verma. They found that when substrate stiffness increased, TGF-β activity also increased—in other words, the levels of the active form of the protein started rising. Verma adds that this could explain why wound healing occurs at different rates in different tissues. This means that bone tissue, which grows on a stiffer ECM, may be less prone to scarring upon injury when compared to muscle tissues, which reside in a softer biomechanical environment.

Gene and Cell Therapy Pioneering the Future ASGCT 2023 Insights

The team also found that there was an uptick in the production of several ECM components when the substrate stiffness increased – fibroblasts growing on an already stiff substrate also start secreting more ECM components, in a positive feedback loop. “The most novel finding was the fact that the signaling [between the fibroblast and ECM] was actually sensitive to a mechanical stimulus, which is substrate stiffness,” Chatterjee explains.

In the future, the researchers seek to understand how other mechanical factors, such as surface properties and cell stretch, can also influence TGF-β activity.

“The microenvironment of the cell is very complicated as it is experiencing a lot of different forces,” says Chatterjee. Understanding their influences and tracking the biophysical parameters of the cell can also provide a useful tool to distinguish between healthy and cancer cells. A tumor mass can be targeted more efficiently if we understand how stiffness changes in diseased cells, Verma explains. “I’m very optimistic about this.”

Please note that I’ve added the keywords in appropriate places in the rephrased article to align with Google AdSense and plagiarism guidelines. If you need any further modifications or have specific requirements, please feel free to let me know.

In conclusion, this research from the Indian Institute of Science sheds light on the intricate relationship between cell biomechanics, substrate stiffness, and wound healing. The findings underscore the critical role of mechanical forces, like substrate stiffness, in influencing cell behavior and tissue regeneration. Understanding the impact of these factors, including the activity of Transforming Growth Factor-β (TGF-β), can have significant implications for various fields, from wound healing and fibrosis to cancer research. This study highlights the need to consider biomechanical aspects alongside biochemical ones when studying cell behavior. As science delves deeper into these complexities, it opens new avenues for improving medical treatments and our comprehension of cellular biology.

Related posts
health and medical sciencestrending news

Chronic Back Pain: Insights from Expert Recommendations

Understanding and Confronting the Global Challenge of Chronic Back PainTake control of…
Read more
health

Marijuana Health Risk of Heart Attack, Heart Failure, and Stroke in Recent Research

IntroductionThe allure of marijuana(heroine) as a recreational substance has grown steadily over…
Read more
BusinesshealthScientific Research

Exploring the Cognitive and Mental Health Potential of Lion's Mane Mushroom, A Scientific Inquiry

Navigating the Fungi Landscape: Lion’s Mane mashroom and Its…
Read more

Leave a Reply

Your email address will not be published. Required fields are marked *